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FOR ∞-VARIATE LINEAR PROBLEMS

This thesis is a representation of my contribution to the paper of the same name I co-
author with Dr. Wasilkowski [3]. It deals with linear problems defined on γ-weighted
normed spaces of functions with infinitely many variables. In particular, I describe
methods and discuss results for ε-truncation and ε-superposition methods. I show
through these results that the ε-truncation and ε-superposition dimensions are small
under modest error demand ε. These positive results are derived for product weights
and the so-called anchored decomposition.
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Chapter 1 Introduction

This thesis is based on the paper [3] of the same name I co-authored with my advisor
Dr. Wasilkowski. It focuses on my contributions to the project and I have had to
borrow methods and sections from what Dr. Wasilkowski wrote in that paper, with
his permission, in order to provide context for my contributions.

Our paper is concerned with the complexity of linear problems defined on γ-
weighted Hilbert spaces of functions with infinitely many variables. Such problems
appear in a number of applications including stochastic differential equations and
partial differential equations with random coefficients. See, e.g., [9] for a survey.

In our paper, we define and analyze new concepts of ε-superposition and ε-
truncation dimensions in average case and probabilistic settings of Information-Based
Complexity (IBC for short), see [15]. Roughly speaking, these concepts quantify how
well the solutions for ∞-variate functions can be approximated by the solutions of
special functions that depend on only few variables. Originally, these concepts were
considered in, e.g., [1, 16], however the dimensions were defined for specific functions
or for very special subclasses of functions.

This thesis defines and discusses efficient methods for calculating ε-superposition
and ε-truncation dimensions in average and probabilistic settings. The results of
these methods and an analysis of time complexity is included.

We consider reproducing kernel Hilbert spaces F∞ of functions f with infinitely
many variables that admit unique decompositions

f =
∑
u⊂N
|u|≤∞

fu,

where fu is a function that depends only on the variables in u. For example, if
u = {1, 2, 5, 29}, then fu is a function depending on only the first, second, fifth, and
twenty-ninth variables from f . For u = ∅, f∅ is a constant function. Specifically,
my work is concerned with anchored decompositions. A decomposition is anchored if
fu(xu) = 0 if any xj = 0 with j ∈ u.

We endow F∞ with a γ-weighted norm

‖f‖F∞ =

[∑
u

(γ−1u ‖fu‖Fu)
2

]1/2
,

where γu are non-negative numbers, called weights, and Fu are Hilbert spaces of
functions of |u| variables. In our paper we consider other weights, but my work and
thus this thesis is only concerned with weights in the product form

γu =
∏
j∈u

γj

introduced in [14]. I assume without loss of generality that

γj ≥ γj+1 > 0 for all j ∈ N.

1
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The problem we consider is the approximation of S∞(f), where S∞ is a linear and
continuous operator from F∞ into a normed space G,

S∞ : F∞ → G.

A common example for such an S∞ is definite integration of f ∈ F∞ with G = R.
Our paper discusses two approaches to deal with such problems with ∞-varied

functions. The first approach is to reduce the infinite number of variables to a fi-
nite (and possibly small) number k of variables. This leads us to the concept of
ε-truncation dimension discussed in Chapter 3. The second approach is to reduce the
decomposition f =

∑
u fu to f =

∑
u∈V fu, where each u ∈ V has at most a small

number k of variables, and often V has low cardinality as well. This number k is
referred to as the ε-superposition dimension, and is discussed in Chapter 4.

Both these concepts are similar to those in Financial Mathematics and Statistics,
(see, e.g. [1, 16],) but unlike those fields, ε-truncation and ε-superposition in IBC are
defined in the worst case setting with respect to the whole space F∞. This worst-case
approach to ε-truncation was first considered in [7], see also [6, 8]. The methods
described in Chapter 3 are based on [7]. The presentation of ε-superposition in our
paper is based on [5].

For a given error demand ε > 0, the ε-truncation dimension (in the worst case
setting) is given by

dimtrnc(ε) = min

(
k : sup

f∈F∞

‖S∞(f − fk)‖G
‖f‖F∞

≤ ε

)
,

where
fk(x1, . . . , xk) := f(x1, . . . , xk, 0, 0, . . . ).

Hence the ε-truncation dimension depends on the error ε, the solution operator S∞,
and the whole space F∞, but does not depend on specific functions. It is enough
to work with functions fk with only k = dimtrnc(ε) variables to approximate the
solutions S∞(f) for functions with ∞-many variables.

Denoting ‖V‖∞ = maxu∈V |u|, the ε-superposition dimension (in the worst case)
is given by

dimsprp(ε) = min

(
‖V‖∞ : sup

f∈F∞

‖S(f)−
∑

u∈V S(fu)‖F
‖f‖F∞

≤ ε

)
.

This requires the decomposition discussed earlier

f =
∑
u⊆N
|u|≤∞

fu.

The superposition and truncation methods in the worst case have previously been
considered in [5, 6, 7, 8, 13]. In particular, it was shown in [13] that the superposition
dimension is as small as

dimsprp(ε,S) = O

(
ln(1/ε)

ln(ln(1/ε))

)
as ε→ 0

2



www.manaraa.com

and that the corresponding set V is relatively small. In [5] is an efficient algorithm
for constructing the smallest possible V for product weights. I extend this algorithm
to the average and probabilistic cases in Chapter 4.

The results discussed so far deal with the worst case setting. The first paper
dealing with the average ε-truncation dimension is [8]. However, it was done for very
special classes of ∞-variate functions. In [3], we consider more general γ-weighted
Hilbert spaces F∞ that are endowed with zero-mean Gaussian measures µ∞. Our
paper defines the average ε-truncation dimension and probabilistic (ε, δ)-truncation
dimension as follows:

dimavg-t(ε) = inf

(
k :

∫
F∞

‖S∞(f − fk)‖2G µ∞(df) ≤ ε2
)

and
dimprb-t(ε, δ) = inf (k : µ∞ ({f : ‖S∞(f − fk)‖G ≤ ε}) ≥ 1− δ) .

Here fk is as in the definition of the worst case truncation dimension. I define and
implement an efficent algorithm to calculate this dimension in Chapter 3.

The average ε− and probabilistic (ε, δ)−superposition dimensions are defined in a
similar way. Chapter 4 details my method for calculating them.

The spaces F∞ depend on weights γ = (γu)u, and the measures µ∞ depend on
weights α = (αu)u, see Chapter 2. For the continuity of the solution operator, γ2u has
to be summable. For µ∞ to be a Gaussian measure, (γu αu)

2 have to be summable.
Hence, the results depend on the speed of decay of γu and γu αu. We have computed
the values of dimavg-t, dimprb-t, dimavg-s, and dimprb-s for specific cases, some of them
reported here.

Consider γu =
∏

j∈u j
−2 and αu =

∏
j∈u j

−` for ` = 0, 1, 2. Then for the standard

L∞ approximation and ε = 10−i for i = 2, . . . , 5 we have the following

ε = 10−2 10−3 10−4 10−5

` = 0 5 11 24 51
` = 1 3 6 10 18
` = 2 2 4 6 10

values of dimavg-t(ε), and

ε = 10−2 10−3 10−4 10−5

` = 0 8 17 38 81
` = 1 4 8 14 25
` = 2 3 5 8 13

values of dimprb-t(ε, δ) for δ = 0.001
We have even smaller superposition dimensions. In the following tables, we list

the computed results for the same parameters as for the truncation dimension. Since
the size of the corresponding set V is very important in practice, the values of the

3
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dimensions are followed by the cardinalities of the constructed sets V . We have

ε = 10−2 10−3 10−4 10−5

` = 0 3 and 12 3 and 40 4 and 134 4 and 424
` = 1 2 and 6 3 and 13 3 and 31 4 and 74
` = 2 2 and 4 2 and 7 3 and 14 3 and 28

for the average case, and

ε = 10−2 10−3 10−4 10−5

` = 0 3 and 25 4 and 84 4 and 277 5 and 886
` = 1 2 and 9 3 and 22 3 and 53 4 and 126
` = 2 2 and 5 3 and 11 3 and 21 3 and 42

for the probabilistic case with δ = 0.001.

Copyright c© Jonathan Dingess, 2019.
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Chapter 2 Basic Definitions

As this thesis is more concerned with the computation than the definition of ε-
superposition and ε-truncation methods, I have included only what is necessary to
understand these methods. More detailed explanations can be found in [3].

2.1 Notation

I now introduce the notation used in this thesis. Let N denote the set of positive
integers and U denote the collection of all finite and increasing sequences u of positive
integers of the form

u = (u1, . . . , uk), where ui ∈ N and uj < uj+1.

This includes the empty sequence ∅. It is often convenient to think of u as a set.
Then one can also perform set operations on them and write k = |u| for cardinality
of u.

Let D be a non-empty interval in R (possibly infinite like R+ = [0,∞) or R =
(−∞,∞)) and DN be the set of infinite sequences x = (xj)j∈N (sometimes referred
to as points) with xj ∈ D. We also assume that 0 ∈ D so that 0 = (0, 0, . . . ) ∈ DN.

For a given sequence u = (u1, . . . , uk) ∈ U with k = |u| and point x ∈ DN, we
define

xu = (xu1 , . . . , xuk) and [x; u] = y with yj =

{
xj if j ∈ u,
0 if j /∈ u.

In particular, [x; ∅] = 0 = (0, 0, . . . ).

2.2 γ-weighted spaces F∞ and their measures µ∞

Recall a Hilbert Space H of functions f : D → R is a Reproducing Kernel Hilbert
Space if the functionals δx(f) = f(x) are continuous for every x ∈ D. Moreover, the
Riesz representation theorem implies that there exists a function K : D × D → R,
called the Reproducing Kernel of H, with the following properties:

K(·, x) ∈ H and f(x) = 〈f,K(·, x)〉H for every x ∈ D and every f ∈ H.

Let F1 be a reproducing kernel Hilbert space of functions f : D → R whose
reproducing kernel is denoted by K1. We assume that the zero function is the only
constant function in F1, i.e.,

1 /∈ F1. (2.1)

An important class of such spaces is provided by anchored spaces for which

K1(0, 0) = 0 which is equivalent to f(0) = 0 for all f ∈ F1. (2.2)

5
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We endow F1 with a zero-mean Gaussian measure µ1 whose covariance operator and
covariance kernel are denoted by C1 and Cker

1 , respectively. Recall that they are given
by

〈C1(g), h〉F1
=

∫
F1

〈f, g〉 〈f, h〉 µ1(df) and C ker
1 (x, y) =

∫
F1

f(x) f(y)µ1(df)

and C1 is symmetric, positive definite, and has a finite trace,

trace(C1) =

∫
F1

‖f‖2F1
µ1(df) < ∞.

For u = ∅, let F∅ be the space of constant functions with the natural inner-product
and the normal N (0, 1) distribution as denoted later by µ∅.

For non-empty u ∈ U , let Fu be the Hilbert space of functions f : DN → R that
depend only on xu, the variables listed in u. Its reproducing kernel is given by

Ku(x,y) =
∏
j∈u

K1(xj, yj),

and we endow Fu with µu, which is a zero-mean Gaussian measure with the covariance
operator and kernel given respectively by |u|-fold tensor products of C1 and Cker

1 . In
particular,

Cker
u (x,y) =

∏
j∈u

C ker
1 (xj, yj).

The average and probabilistic settings for such spaces and measures have been
studied in many papers; see, e.g., [15].

We use them to define Hilbert spaces F∞ of functions with∞-many variables and
corresponding Gaussian measures µ∞ on them, similar as in [17].

Let γ = (γu)u∈U be a family of nonnegative numbers called weights.
The space F∞ is the Hilbert space spanned by

⊕
u∈U Fu with the norm given by

‖f‖2F∞ =
∑
u∈U

γ−2u ‖fu‖2Fu
for f =

∑
u∈U

fu with fu ∈ Fu.

Note that the decompositions f =
∑

u∈U fu is unique since (2.1) implies that

Fu ∩ Fv = {0} if u 6= v.

Remark 1 The space F∞ is a reproducing kernel Hilbert space if and only if∑
u∈U

γ2u Ku(x,x) < ∞ for every x ∈ DN (2.3)

and then
K∞(·, ·) =

∑
u∈U

γ2u Ku(·, ·)

6
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is the reproducing kernel of F∞. If (2.3) does not hold, then for some x ∈ DN and
f ∈ F∞, the series

∑
u∈U fu(x) does not converge. In such a case, we treat F∞ as a

space of sequences f = (fu)u∈U . However, even then

f([x;w]) =
∑
u∈U

fu([x;w]) =
∑
u⊆w

fu(x)

is finite for every x ∈ DN, w ∈ U , and f ∈ F∞, if the spaces Fu are anchored at zero.

For a given family α = (αu)u∈U of positive numbers, we endow the space F∞ with
the zero-mean Gaussian measure µ∞ whose covariance operator C∞ is defined by

C∞(f) =
∑
u∈U

α2
u Cu(fu) for all f =

∑
u∈U

fu ∈ F∞.

Note that µ∞ is well defined if and only if it has a finite trace. As shown in the
Appendix of [17]1,

trace(C∞) =
∑
u∈U

α2
u γ

2
u trace(Cu).

Since trace(Cu) = (trace(C1))
|u|, we assume that∑

u∈U

α2
u γ

2
u (trace(C1))

|u| < ∞, (2.4)

which is a necessary and sufficient condition for µ∞ to be well defined.
If F∞ is a reproducing kernel Hilbert space (see Remark 1) then the covariance

kernel of µ∞, as shown in the Appendix of [17], exists and is given by

Cker∞ (x,y) =
∑
u∈U

α2
u γ

2
u

∏
j∈u

Cker
1 (xj, yj).

2.3 Linear Problem

Let G be a normed space whose norm is denoted by ‖·‖G. Let S∞ be a linear operator

S∞ : F∞ → G,

and let
Su := S∞|Fu : Fu → G

be the restrictions of S∞ to the spaces Fu. Let ‖Su‖ denote the corresponding operator
norm,

‖Su‖ = sup
fu∈Fu

‖Su(fu)‖G
‖fu‖Fu

.

1In [17], δu is used instead of αu, and αu there is what αu γu is in the current paper.

7
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We assume that [∑
u∈U

(γu ‖Su‖)2
]1/2

<∞. (2.5)

This is because (2.5) implies continuity of S∞. Indeed, we have the following propo-
sition whose proof can be found in, e.g., [17]1.

Proposition 2 The operator norm of S∞ is bounded by

‖S∞‖ ≤

[∑
u∈U

(γu ‖Su‖)2
]1/2

with the equality if S∞ is a functional.

If the weights have product form and S∞ satisfies the following condition:

there exists constant T1 such that ‖Su‖ ≤ T
|u|
1 for all u ∈ U , (2.6)

then [∑
u∈U

(γu ‖Su‖)2
]1/2

≤

[
∞∏
j=1

(1 + (γj T1)
2)

]1/2
.

We will illustrate some of the results using the following function approximation
problem.

Example 3 (Lq Approximation) Let D = [0, 1] and Fu consist of

fu(xu) =

∫
D|u|

∏
j∈u

(xj − tj)0+ h(tu)dtu for hu ∈ L2(D
|u|)

with the norm equal to the L2 norm of hu, i.e., the L2 norm of the mixed partial first
order derivatives of fu. The reproducing kernel of Fu is then

Ku(x,y) =
∏
j∈u

min(xj, yj).

For S1 consider the embedding from F1 into Lq([0, 1]) for given q ∈ [1,∞]. Then

‖S1‖ ≤ T1 =

(
2

2 + q

)1/q

,

which reduces to 1 for q =∞. Hence

‖Su‖ ≤
(

2

2 + q

)|u|/q
.

8
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2.4 Specific Weights

My results primarily assume product weights of the form

γu =
∏
j∈u

γj and αu =
∏
j∈u

αj

introduced in [14]. Here, γj and αj are positive numbers and without loss of generality
γj ≥ γj+1 for all j ∈ N. It also becomes convenient later to write

γu = γu‖Su‖, and αu = αuγu

√
trace(C1)|u|.

For example, in my numerical results, I use γj = j−a, αj = j−b for a ∈ {1, 2},
b ∈ {0, 1, 2}, but my methods work for other product weights.

Copyright c© Jonathan Dingess, 2019.
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Chapter 3 ε-Truncation Dimension

The method of ε-truncation seeks to reduce the infinitely many variables to a finite
(and small) number, denoted by dimtrnc(ε,S). ε-Truncation in the worst case has
been introduced in [7]. We extend it in [3] to average and probabilistic settings with
respect to the probability measure µ∞. Following are my methods for finding the
ε-truncation dimension in these average and probabilistic cases, and the results for
different parameters.

3.1 Methods

The fact that we are working with anchored spaces gives us the very important
property from [12]: For any f , any u, and any x,

fu(x) =
∑
w⊆u

(−1)|u|−|w|f([x;w]).

Because the variables in F∞ have been weighted without loss of generality in
increasing order, the first variables will give the largest contribution to our approx-
imation of S∞. Thus, we consider a non-negative integer k and the corresponding
function fk:

fk(x) := f(x1, . . . , xk, 0, 0 . . . ) = f([x; {1, . . . , k}]). (3.1)

Both fk and S∞(fk) are well defined since

fk =
∑

w⊆{1,...,k}

fw ∈ F∞.

From [3], we have the following definition and theorem.

Definition 4 Let ε > 0 and δ ∈ (0, 1). The average ε-truncation dimension is de-
fined by

dimavg-t(ε;S∞, µ∞) := inf

(
k :

∫
F∞

‖S∞(f − fk)‖2G µ∞(df) ≤ ε2
)
. (3.2)

The probabilistic (ε, δ)-truncation dimension is defined by

dim prb-t(ε, δ;S∞, µ∞) := inf (k : µ∞ ({f ∈ F∞ : ‖S∞(f − fk)‖G ≤ ε}) ≥ 1− δ) .
(3.3)

In both cases we use the convention that inf ∅ =∞.

To shorten the notation, we will write sometimes dimavg-trnc(ε) and dimprob-trnc(ε, δ).

10
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Theorem 5 We have

dimavg-t(ε) ≤ inf
(
k : B(k) ≤ ε2

)
and

dimprb-t(ε, δ) ≤ inf

(
k : B(k) ≤ ε2

2 ln(5/δ)

)
,

where

B(k) :=

[ ∑
u6⊆{1,...,k}

(γu ‖Su‖)2
] [ ∑

u6⊆{1,...,k}

(αu γu)
2 ( trace(C1))

|u|
]

(3.4)

for k ∈ {0} ∪ N. Additionally, if

αu =
∏
j∈u

αj, γu =
∏
j∈u

γj, and ‖Su‖ ≤ T
|u|
1 , (3.5)

then

B(k) ≤ ER(k) trace(C∞)
∞∏
j=1

(1 + (γj T1)
2)

where

ER(k) :=

[
1− exp

(
− T 2

1

∞∑
j=k+1

γ2j

)][
1− exp

(
− trace(C1)

∞∑
j=k+1

(αj γj)
2

)]
.

I constructed a program to find the bound given by Theorem 5 for different pa-
rameters. This program assumes the restrictions given by (3.5), i.e. that the weights
are of Product Form. This program was written in python and uses the Decimal
library to control precision of mathematical operations.

In order to find this bound, we need to be able to compute B(k). We can begin
to find the value of B(k) given in (3.4) by noting∑

u6⊆{1,...,k}

xu =
∑
u∈U

xu −
∑

u⊆{1,...,k}

xu.

The goal is, then, to approximate∑
u∈U

γ2u‖Su‖2 and
∑
u∈U

α2
uγ

2
utrace(C1)

|u| (3.6)

from above with relative error significantly smaller than ε2, and find an efficient means
of calculating ∑

u⊆{1,...,k}

γ2u‖Su‖2 and
∑

u⊆{1,...,k}

α2
uγ

2
utrace(C1)

|u|.

The latter is achieved using the following equality, which holds only because we
assume product weights: ∑

u⊆{1,...,k}

c|u|γu =
k∏
j=1

(1 + c γj).

11
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This gives us the easier to compute

∑
u⊆{1,...,k}

γ2u‖Su‖2 ≤
∑

u⊆{1,...,k}

γ2uT
2|u|
1 =

k∏
j=1

(
1 + T 2

1

1

j2a

)
,

and ∑
u⊆{1,...,k}

α2
uγ

2
utrace(C1)

|u| =
k∏
j=1

(
1 + trace(C1)

1

j2(a+b)

)
.

I use a similar approach to that of [5] to obtain approximations of (3.6):

Definition 6 For a positive number s, let

L :=
∑
u∈U

(
γ2u‖Su‖2

)
,

Ls := exp

(
T 2
1

(2a− 1)(s+ 1
2
)(2a−1)

) s∏
j=1

(
1 + T 2

1

1

j2a

)
,

R :=
∑
u∈U

(
α2
uγ

2
utrace(C1)

|u|),
Rs := exp

(
trace(C1)

(2(a+ b)− 1)(s+ 1
2
)(2(a+b)−1)

) s∏
j=1

(
1 + trace(C1)

1

j2(a+b)

)
Proposition 7

L ≤ Ls and R ≤ Rs

Proof. We assume product weights, with

γj =
1

ja
and αj =

1

jb

12
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for a > 1/2 and a+ b > 1/2. Then

L =
∑
u∈U

(
γ2u‖Su‖2

)
=
∑
u∈U

(
‖Su‖2

∏
j∈u

1

j2a

)

≤
∑
u∈U

(
T

2|u|
1

∏
j∈u

1

j2a

)

=
∞∏
j=1

(
1 + T 2

1

1

j2a

)

= exp

(
ln

(
∞∏

j=s+1

(
1 + T 2

1

1

j2a

))) s∏
j=1

(
1 + T 2

1

1

j2a

)

≤ exp

(
T 2
1

∞∑
j=s+1

1

j2a

)
s∏
j=1

(
1 + T 2

1

1

j2a

)

≤ exp

(
T 2
1

∫ ∞
s+1/2

1

x2a
dx

) s∏
j=1

(
1 + T 2

1

1

j2a

)

= exp

(
T 2
1

(2a− 1)(s+ 1
2
)(2a−1)

) s∏
j=1

(
1 + T 2

1

1

j2a

)
= Ls

The proof of R ≤ Rs is similar. 2

In [3] we also prove that the relative error between L and Ls is proportional to 1/s4a−2

with asymptotic constant T 2
1 /(2

2a−1)
∏∞

j=1 (1 + T 2
1 /j

2a). Similarly, The relative error

between R and Rs is proportional to 1/s4(a+b)+2 with asymptotic constant equal to
trace(C1)/(2

2(a+b)+1)
∏∞

j=1 (1 + trace(C1)/j
2(a+b))

For even modest s, these Ls and Rs approximations provide an approximation
of L and R with error much less than ε. In my programs, I used s = 1000000, as
this value calculated the approximation quickly while maintaining accuracy for the
smallest value of ε at 10−5. I experimented with different values of s, but for a = 2
and most values of q, increasing s from 1000000 causes a change in Ls on the order
of 10−30, and our threshold from Theorem 5 is much larger than that (order of 10−12

at the smallest).
A näıve approach would now begin at k = 0 and increment k by one until the

threshold defined in Theorem 5 is reached. I improve on this by beginning at k = 2
and doubling k until the threshold is exceeded, then using binary search to find the
exact value. In addition, in my program I have parameterized the starting value of
k = 2 to allow for quick re-tests. This was very helpful when calculating probabilistic
(ε, δ)-truncation dimension for different values of δ.

13
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The time complexity of computing the products

k∏
j=1

(
1 + T 2

1

1

j2a

)
, and

k∏
j=1

(
1 + trace(C1)

1

j2(a+b)

)
is given by O(k). Let m be 2dlog2 (dim)e. In our method, m is the largest dimension we
evaluate the weight of. Thus, the time complexity of finding these weights is given
by O(m). We evaluate the weights of dlog2 (dim)e weights on our way up to m, then
conduct our binary search. The run time of the binary search in the worst case is
given by O(m/2). The total time complexity of our method, then, is O(m log (m)).

3.2 Results

Using the methods outlined above, I was able to calculate the ε-truncation dimension
under several different parameters:

trace(C1) = 2, ε = 10−i for i ∈ {2, . . . , 5}, γj = j−2 and αj = j−b for b ∈ {0, 1, 2}.

To obtain a bound on ‖S1‖, I also considered the approximation problem from Ex-
ample 3 for

q ∈ {1, 2,∞} with ‖S1‖ ≤ T1 =

(
2

2 + q

)1/q

.

Of course, for q =∞ we have T1 = 1. I use s = 1000000 for my approximation of Ls
and Rs.

ε = 10−2 10−3 10−4 10−5

b = 0 4 9 19 42
b = 1 3 5 8 15
b = 2 2 3 5 8

for q = 1,

ε = 10−2 10−3 10−4 10−5

b = 0 4 9 20 43
b = 1 3 5 9 15
b = 2 2 3 5 9

for q = 2,

and
ε = 10−2 10−3 10−4 10−5

b = 0 5 11 24 51
b = 1 3 6 10 18
b = 2 2 4 6 10

for q =∞.

I collected similar results for probabilistic (δ, ε)-truncation dimension. Specifically,
I collected results with the same parameters above, and δ ∈ {10−1, 10−2, 10−3}. I
report results for δ = 10−3 here:

ε = 10−2 10−3 10−4 10−5

b = 0 7 14 32 67
b = 1 4 7 12 22
b = 2 3 4 7 11

for q = 1,

14
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ε = 10−2 10−3 10−4 10−5

b = 0 7 15 32 69
b = 1 4 7 12 22
b = 2 3 4 7 11

for q = 2,

and
ε = 10−2 10−3 10−4 10−5

b = 0 8 17 38 81
b = 1 4 8 14 25
b = 2 3 5 8 13

for q =∞.

Using the same parameters, I also collected results for the execution time of my
algorithm. All results were collected on the same machine, and each case was executed
immediately after the last. Times are measured in seconds. The time to approximate
Ls and Rs is not included in these totals. I report first the execution times for the
average ε-truncation dimension.

ε = 10−2 10−3 10−4 10−5

b = 0 0.0012520 0.0011422 0.0010427 0.0016267
b = 1 0.0002747 0.0004818 0.0004640 0.0007422
b = 2 0.0000684 0.0002716 0.0004693 0.0004658

for q = 1,

ε = 10−2 10−3 10−4 10−5

b = 0 0.0006516 0.0007147 0.0010271 0.0016027
b = 1 0.0002702 0.0005822 0.0007173 0.0007102
b = 2 0.0000636 0.0002689 0.0004716 0.0011338

for q = 2,

and

ε = 10−2 10−3 10−4 10−5

b = 0 0.0005720 0.0011173 0.0010507 0.0017738
b = 1 0.0002671 0.0004551 0.0006951 0.0010400
b = 2 0.0000711 0.0002796 0.0004684 0.0006951

for q =∞.

And here are the execution times for the probabilistic (δ, ε)-truncation dimension,
with δ = 10−3:

ε = 10−2 10−3 10−4 10−5

b = 0 0.0005996 0.0015333 0.0012889 0.0027591
b = 1 0.0003751 0.0008378 0.0008298 0.0012067
b = 2 0.0003742 0.0003618 0.0014644 0.0008280

for q = 1,

ε = 10−2 10−3 10−4 10−5

b = 0 0.0006231 0.0008498 0.0020004 0.0027951
b = 1 0.0007947 0.0005982 0.0008329 0.0012640
b = 2 0.0003756 0.0004956 0.0006316 0.0008542

for q = 2,
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and

ε = 10−2 10−3 10−4 10−5

b = 0 0.0007827 0.0013360 0.0017280 0.0045151
b = 1 0.0003720 0.0005818 0.0008516 0.0020204
b = 2 0.0004156 0.0011027 0.0009658 0.0010502

for q =∞.

The execution times are mostly negligible, as each takes just a fraction of a second,
but these give us insight into how each parameter effects execution time. It makes
sense that the execution time is highly correlated with the dimension.

As my program is written in Python, it is unlikely any caching sped up the process,
but it would be possible to achieve a significant increase in time by caching the weights
for calculated values. When increasing k, one could start at an already-calculated
value instead of 1 for the calculation of

k∏
j=1

(
1 + T 2

1

1

j2a

)
, and

k∏
j=1

(
1 + trace(C1)

1

j2(a+b)

)
.

This was not necessary for my purposes, though.

Copyright c© Jonathan Dingess, 2019.
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Chapter 4 ε-Superposition Dimension

The concept of ε-superposition is subtly different from ε-truncation. Where ε-truncation
reduces our infinitely many variables to a small finite number, ε-superposition instead
considers the weights of the actual groups being constructed.

For example, with an ε-truncation dimension of 3, we only consider the groups

u ∈ V , V =
{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
However, ε-superposition dimension does not limit itself to a specific set of variables.
Our method is to continuously add the set with the highest weight to our ‘active set’
V , regardless of the variables therein. As a result, one possible example of a set with
an ε-superposition dimension of 2 would be:

u ∈ V , V =
{
∅, {1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {1, 3}

}
Of course, many other possible examples of sets with ε-superposition dimension of
2 exist. In general, ε-superposition results in smaller sets and lower dimension than
ε-truncation, as it can always choose the group with the largest weights and does not
force itself to take possibly low-value groups early, such as {1, 2, 3} in these examples.

The concept of ε-superposition dimension in the worst case setting was used im-
plicitly by [11] when introducing what are now referred to as Multivariate Decom-
position Methods (in that paper, Changing Dimension Algorithms). A very efficient
method to calculate the dimension for product weights was proposed in [5]. We im-
plement a similar method to extend this concept in average and probabilistic settings.

4.1 Definitions

The following is repeated from [3] for context. We first define

‖V‖∞ := max
u∈V
|u| for any V ⊂ U .

Definition 8 Let ε > 0 and δ ∈ (0, 1). A subset V ⊆ U is said to be ε-active if∫
F∞

∥∥∥∥S∞( ∑
u∈U\V

fu

)∥∥∥∥2
G
µ∞(df) ≤ ε2.

It is said to be (ε, δ)-active if

µ∞

{f ∈ F∞ :

∥∥∥∥S∞( ∑
u∈U\V

fu

)∥∥∥∥
G
≤ ε

} ≥ 1− δ.

The average and probabilistic ε-superposition dimensions are defined respectively by

dimavg-s(ε;S∞, µ∞) := inf {‖V‖∞ : V is ε-active} , (4.1)

dimprb-s(ε, δ;S∞, µ∞) := inf {‖V‖∞ : V is (ε, δ)-active} . (4.2)

17



www.manaraa.com

By Vε or V(ε,δ) we denote subsets that are respectively ε-active or (ε, δ)-active whose
‖·‖∞ are equal to the corresponding average or probabilistic superpositions dimension.

Often we will simply write dimavg-s(ε) and dimprb-s(ε, δ).

Corollary 9 It is easy to see that

dimavg-s(ε) ≤ dimavg-t(ε) and dimprb-s(ε, δ) ≤ dimprb-t(ε, δ)

As we shall see, under the assumptions already introduced, there exist Vε and
V(ε,δ) subsets that are not only finite but have surprisingly small cardinalities. This
property makes Multivariate Decomposition Methods (see [11]) so effective since it is
enough to approximate only those Su(fu) whose u belongs to Ve (or V(δ,ε)).

Proposition 10 Any subset V ⊆ U satisfying[ ∑
u∈U\V

γ2u ‖Su‖2
] [ ∑

u∈U\V

(αu γu)
2 trace(Cu)

]
≤ ε2 (4.3)

is ε-active. Any subset V ⊆ U satisfying[ ∑
u∈U\V

γ2u ‖Su‖2
] [ ∑

u∈U\V

(αu γu)
2 trace(Cu)

]
≤ ε2

2 ln(5/δ)
(4.4)

is (ε, δ)-active.

4.2 Methods

It is these bounds (4.3) and (4.4) that I am most concerned with in my work.
We already have a good approximation of∑

u∈U

γ2u‖Su‖2 =
∑
u∈U

γ2u and
∑
u∈U

α2
uγ

2
utrace(C1)

|u| =
∑
u∈U

α2
u

from Definition 6. I follow the efficient method from [5] and extend it to the aver-
age and probabilistic settings by using these new bounds defined in (4.3) and (4.4).
Roughly, we begin with our approximations Ls and Rs from Definition 6 and contin-
uously add sets u to V , subtracting from Ls and Rs as we go until we have achieved
the bounds defined in (4.3) and (4.4).

Selecting which u to add to V poses a problem, though. We would like to add
those u ∈ U with the largest impact on Ls · Rs first, if possible. The impact adding
a given set w to V will have on our bounds (4.3) and (4.4) is given by[ ∑

u∈U\V

γ2u

] [ ∑
u∈U\V

α2
u

]
−
[ ∑

u∈U\(V∪w)

γ2u

] [ ∑
u∈U\(V∪w)

α2
u

]

= γ2w

[ ∑
u∈U\V

α2
u

]
+ α2

w

[ ∑
u∈U\V

γ2u

]
− γ2wα2

w. (4.5)
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Comparing this impact value between different weights quickly becomes exhausting,
as each time we update V we have to recalculate the impact for each other set. Thus,
instead of adding sets one-by-one, I take inspiration from [5] and add many sets at
once, as long as we remain above the threshold. To do this, I divide R+ into intervals
Ii such that the numbers in Ij are greater than those in Ij+1. After trying a few
different intervals, I settled on using

I1 = [2−1,∞), and Ij = [2−j, 2−j+1) for j = 2, 3, . . . ,

though I believe a better, less uniform partition is possible. Instead of adding each
u one at a time, I gather all the u whose impact value falls into a single interval and
add them all at once, as long as it does not bring us below the thresholds defined by
(4.3) and (4.4). This significantly speeds up the process of constructing V .

One important piece of this program that I’ve omitted so far is generating new
sets to add. The method I use is identical to that of [5]. We first add the empty set
to V , as it always has the largest weight. We consider the non-empty sets in order
of increasing cardinality. Hence, I start with singleton sets u = {1}, {2}, {3}, . . . , as
long as their ’impact’ defined above is within the current interval. Once I reach a
set not in this interval, I store it in a list of sets to consider for the next interval
and move on to sets with cardinality 2. I repeat the same process, beginning with
u = {1, 2}, {1, 3}, {1, 4}, . . . and then u = {2, 3}, {2, 4}, {2, 5}, . . . and so on. The
same process is continued for sets with increasing cardinality until we have scoped
out all groups that belong to the current interval. We can then add all these sets to
V at once if this does not bring us below our threshold, or we can add them one at
a time within this interval to get right over the threshold and not add extra sets. If
we do not reach our threshold, we simply continue with the next interval.

4.3 Results

I have computed the average and probabilistic ε-superposition dimensions for the
same parameters as for ε-truncation dimension, i.e.,

trace(C1) = 2, ε = 10−i for i ∈ {2, . . . , 5}, γj = j−2 and αj = j−b for b ∈ {0, 1, 2}

with T1 = (2/(2 + q))1/q for q = 1, 2,∞. In the following tables I list the dimen-
sion followed by the cardinality of the constructed active set. First, the average
ε-superposition dimension:

ε = 10−2 10−3 10−4 10−5

b = 0 2 and 9 3 and 28 4 and 84 4 and 296
b = 1 2 and 5 2 and 10 3 and 25 3 and 57
b = 2 2 and 4 2 and 13 2 and 13 3 and 23

for q = 1,

ε = 10−2 10−3 10−4 10−5

b = 0 2 and 9 3 and 29 4 and 94 4 and 314
b = 1 2 and 5 2 and 11 3 and 25 3 and 58
b = 2 2 and 4 2 and 6 3 and 13 3 and 23

for q = 2,
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and

ε = 10−2 10−3 10−4 10−5

b = 0 3 and 12 3 and 40 4 and 134 4 and 424
b = 1 2 and 6 3 and 13 3 and 31 4 and 74
b = 2 2 and 4 2 and 7 3 and 14 3 and 28

for q =∞,

As before, I also took results for probabilistic ε-superposition dimension with δ ∈
{10−1, 10−2, 10−3}. Below are results for δ = 10−3:

ε = 10−2 10−3 10−4 10−5

b = 0 3 and 18 3 and 57 4 and 182 4 and 601
b = 1 2 and 8 3 and 18 3 and 40 4 and 93
b = 2 2 and 5 2 and 9 3 and 18 3 and 35

for q = 1,

ε = 10−2 10−3 10−4 10−5

b = 0 3 and 19 3 and 60 4 and 192 4 and 625
b = 1 2 and 8 3 and 18 3 and 42 4 and 99
b = 2 2 and 5 2 and 9 3 and 19 3 and 35

for q = 2,

and

ε = 10−2 10−3 10−4 10−5

b = 0 3 and 25 4 and 84 4 and 277 5 and 886
b = 1 2 and 9 3 and 22 3 and 53 4 and 126
b = 2 2 and 5 3 and 11 3 and 21 3 and 242

for q =∞,

It is easy to see from these results why approximation methods based on ε-
superposition are so efficient. The most difficult case listed above is the probabilistic
superposition dimension for δ = 10−3, ε = 10−5, αj ≡ 1. Even then, we need only
approximate 886 functions, each with at most 5 variables, in order to approximate
the whole function f with error, say 2 · 10−5.

Using the same parameters, following are the execution times, measured in sec-
onds, of my algorithm for each case. These were all computed on the same machine
immediately after one another. The times for calculating Ls and Rs are not included
in these totals. For the average setting:

ε = 10−2 10−3 10−4 10−5

b = 0 0.0006467 0.0016587 0.0045111 0.0109676
b = 1 0.0003640 0.0006511 0.0013604 0.0028449
b = 2 0.0002298 0.0003662 0.0007716 0.0011942

for q = 1,

ε = 10−2 10−3 10−4 10−5

b = 0 0.0005227 0.0015507 0.0045907 0.0112924
b = 1 0.0003569 0.0006249 0.0013369 0.0027947
b = 2 0.0002027 0.0003862 0.0007013 0.0012462

for q = 2,
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and

ε = 10−2 10−3 10−4 10−5

b = 0 0.0006498 0.0022596 0.0054698 0.0154444
b = 1 0.0003404 0.0007524 0.0014804 0.0034618
b = 2 0.0001782 0.0004298 0.0006653 0.0014609

for q =∞,

For δ = 10−3, these are the execution times for the probabilistic ε-superposition
dimension:

ε = 10−2 10−3 10−4 10−5

b = 0 0.0012307 0.0032693 0.0071449 0.0211893
b = 1 0.0006716 0.0012044 0.0021142 0.0049244
b = 2 0.0005453 0.0006142 0.0011702 0.0018916

for q = 1,

ε = 10−2 10−3 10−4 10−5

b = 0 0.0011556 0.0029947 0.0088484 0.0218658
b = 1 0.0017182 0.0013698 0.0019520 0.0053609
b = 2 0.0005738 0.0006058 0.0011280 0.0020147

for q = 2,

and

ε = 10−2 10−3 10−4 10−5

b = 0 0.0015018 0.0037382 0.0096893 0.0309280
b = 1 0.0012707 0.0013204 0.0033027 0.0051756
b = 2 0.0003951 0.0007644 0.0012911 0.0021436

for q =∞,

Copyright c© Jonathan Dingess, 2019.
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tion of multivariate functions, Mathematics of Computation 79 (2010), 953–966.

22



www.manaraa.com

[13] L. Plaskota and G. W. Wasilkowski, Tractability of infinite-dimensional inte-
gration in the worst case and randomized settings, J. Complexity 27 (2011),
505–518.
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